307 research outputs found

    On the theory of resonant susceptibility of dielectric glasses in magnetic field

    Full text link
    The anomalous magnetic field dependence of dielectric properties of insulating glasses in the temperature interval 10mK<T<50mK10mK<T<50mK is considered. In this temperature range, the dielectric permittivity is defined by the resonant contribution of tunneling systems. The external magnetic field regulates nuclear spins of tunneling atoms. This regulation suppresses a nuclear quadrupole interaction of these spins with lattice and, thus, affects the dielectric response of tunneling systems. It is demonstrated that in the absence of an external magnetic field the nuclear quadrupole interaction bb results in the correction to the permittivity δχ∼∣b∣/T\delta\chi\sim| b| /T in the temperature range of interest. An application of a magnetic field results in a sharp increase of this correction approximately by a factor of two when the Zeeman splitting mm approaches the order of ∣b∣| b| . Further increase of the magnetic field results in a relatively smooth decrease in the correction until the Zeeman splitting approaches the temperature. This smooth dependence results from tunneling accompanied by a change of the nuclear spin projection. As the magnetic field surpasses the temperature, the correction vanishes. The results obtained in this paper are compared with experiment. A new mechanism of the low temperature nuclear spin-lattice relaxation in glasses is considered.Comment: 9 Pages, 5 Figures, To be submitted to the Physical Review B, please send comment

    On the contribution of nearly-critical spin and charge collective modes to the Raman spectra of high-Tc cuprates

    Full text link
    We discuss how Raman spectra are affected by nearly-critical spin and charge collective modes, which are coupled to charge carriers near a stripe quantum critical point. We show that specific fingerprints of nearly-critical collective modes can indeed be observed in Raman spectra and that the selectivity of Raman spectroscopy in momentum space may also be exploited to distinguish the spin and charge contribution. We apply our results to discuss the spectra of high-Tc superconducting cuprates finding that the collective modes should have masses with substantial temperature dependence in agreement with their nearly critical character. Moreover spin modes should be more diffusive than charge modes indicating that in stripes the charge is nearly ordered, while spin modes are strongly overdamped and fluctuate with high frequency.Comment: 5 pages, 3 figure

    Magnetic Field Dependent Tunneling in Glasses

    Full text link
    We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both, the complete lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable.Comment: 4 pages, 4 figure

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E≈13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE≈120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E≈10−3\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements

    Is local scale invariance a generic property of ageing phenomena ?

    Full text link
    In contrast to recent claims by Enss, Henkel, Picone, and Schollwoeck [J. Phys. A 37, 10479] it is shown that the critical autoresponse function of the 1+1-dimensional contact process is not in agreement with the predictions of local scale invariance.Comment: 7 pages, 3 figures, final form, c++ source code on reques

    Evidence for Magnetic Field Induced Changes of the Phase of Tunneling States: Spontaneous Echoes in (KBr)1−x_{1-x}(KCN)x_x in Magnetic Fields

    Full text link
    Recently, it has been discovered that in contrast to expectations the low-temperature dielectric properties of some multi-component glasses depend strongly on magnetic fields. In particular, the low-frequency dielectric susceptibility and the amplitude of coherent polarization echoes show striking non-monotonic magnetic field dependencies. The low-temperature dielectric response of these materials is governed by atomic tunneling systems. We now have investigated the coherent properties of tunneling states in a crystalline host in magnetic fields up to 230 mT. Two-pulse echo experiments have been performed on a KBr crystal containing about 7.5% CN−^-. Like in glasses, but perhaps even more surprising in the case of a crystalline system, we observe a very strong magnetic field dependence of the echo amplitude. Moreover, for the first time we have direct evidence that magnetic fields change the phase of coherent tunneling systems in a well-defined way. We present the data and discuss the possible origin of this intriguing effect.Comment: 4 pages, 3 figures, submitted to PR

    Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    Get PDF
    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the 3He/4He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current.Comment: 4 pages, 3 figure
    • …
    corecore